

CSA B44.1:25/ASME A17.5-2025

Elevator and escalator electrical equipment

ASMENORMDOC.COM : Click to view the full PDF of ASME A17.5 CSA B44.1 2025

Legal Notice for Harmonized Standard Jointly Developed by ASME and CSA Group

Intellectual property rights and ownership

As between American Society of Mechanical Engineers ("ASME") and Canadian Standards Association (Operating as "CSA Group") (collectively "ASME and CSA Group") and the users of this document (whether it be in printed or electronic form), ASME and CSA Group are the joint owners of all works contained herein that are protected by copyright, all trade-marks (except as otherwise noted to the contrary), and all inventions and trade secrets that may be contained in this document, whether or not such inventions and trade secrets are protected by patents and applications for patents. The unauthorized use, modification, copying, or disclosure of this document may violate laws that protect the intellectual property of ASME and CSA Group and may give rise to a right in ASME and CSA Group to seek legal redress for such use, modification, copying, or disclosure. ASME and CSA Group reserve all intellectual property rights in this document.

Disclaimer and exclusion of liability

This document is provided without any representations, warranties, or conditions of any kind, express or implied, including, without limitation, implied warranties or conditions concerning this document's fitness for a particular purpose or use, its merchantability, or its non-infringement of any third party's intellectual property rights. ASME and CSA Group do not warrant the accuracy, completeness, or currency of any of the information published in this document. ASME and CSA Group make no representations or warranties regarding this document's compliance with any applicable statute, rule, or regulation.

IN NO EVENT SHALL ASME AND CSA GROUP, THEIR RESPECTIVE VOLUNTEERS, MEMBERS, SUBSIDIARIES, OR AFFILIATED COMPANIES, OR THEIR EMPLOYEES, DIRECTORS, OR OFFICERS, BE LIABLE FOR ANY DIRECT, INDIRECT, OR INCIDENTAL DAMAGES, INJURY, LOSS, COSTS, OR EXPENSES, HOWSOEVER CAUSED, INCLUDING BUT NOT LIMITED TO SPECIAL OR CONSEQUENTIAL DAMAGES, LOST REVENUE, BUSINESS INTERRUPTION, LOST OR DAMAGED DATA, OR ANY OTHER COMMERCIAL OR ECONOMIC LOSS, WHETHER BASED IN CONTRACT, TORT (INCLUDING NEGLIGENCE), OR ANY OTHER THEORY OF LIABILITY, ARISING OUT OF OR RESULTING FROM ACCESS TO OR POSSESSION OR USE OF THIS DOCUMENT, EVEN IF ASME OR CSA GROUP HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, INJURY, LOSS, COSTS, OR EXPENSES.

In publishing and making this document available, ASME and CSA Group are not undertaking to render professional or other services for or on behalf of any person or entity or to perform any duty owed by any person or entity to another person or entity. The information in this document is directed to those who have the appropriate degree of experience to use and apply its contents, and ASME and CSA Group accept no responsibility whatsoever arising in any way from any and all use of or reliance on the information contained in this document.

ASME and CSA Group have no power, nor do they undertake, to enforce compliance with the contents of the standards or other documents they jointly publish.

Authorized use of this document

This document is being provided by ASME and CSA Group for informational and non-commercial use only. The user of this document is authorized to do only the following:

If this document is in electronic form:

- load this document onto a computer for the sole purpose of reviewing it;
- search and browse this document; and
- print this document if it is in PDF format.

Limited copies of this document in print or paper form may be distributed only to persons who are authorized by ASME and CSA Group to have such copies, and only if this Legal Notice appears on each such copy.

In addition, users may not and may not permit others to

- alter this document in any way or remove this Legal Notice from the attached standard;
- sell this document without authorization from ASME and CSA Group; or
- make an electronic copy of this document.

If you do not agree with any of the terms and conditions contained in this Legal Notice, you may not load or use this document or make any copies of the contents hereof, and if you do make such copies, you are required to destroy them immediately. Use of this document constitutes your acceptance of the terms and conditions of this Legal Notice.

Standards Update Service

CSA B44.1:25/ASME A17.5-2025

March 2025

Title: *Elevator and escalator electrical equipment*

To register for e-mail notification about any updates to this publication go to updates.csagroup.org.

The **List ID** that you will need to register for updates to this publication is **2430939**.

If you require assistance, please e-mail techsupport@csagroup.org or call 416-747-2233.

Visit CSA Group's policy on privacy at www.csagroup.org/legal to find out how we protect your personal information.

ASME/NORMDOC.COM : Click to view the full PDF of ASME A17.5 CSA B44.1 2025

Canadian Standards Association (operating as "CSA Group"), under whose auspices this National Standard has been produced, was chartered in 1919 and accredited by the Standards Council of Canada to the National Standards system in 1973. It is a not-for-profit, nonstatutory, voluntary membership association engaged in standards development and certification activities.

CSA Group standards reflect a national consensus of producers and users — including manufacturers, consumers, retailers, unions and professional organizations, and governmental agencies. The standards are used widely by industry and commerce and often adopted by municipal, provincial, and federal governments in their regulations, particularly in the fields of health, safety, building and construction, and the environment.

More than 10 000 members indicate their support for CSA Group's standards development by volunteering their time and skills to Committee work.

CSA Group offers certification and testing services in support of and as an extension to its standards development activities. To ensure the integrity of its certification process, CSA Group regularly and continually audits and inspects products that bear the CSA Group Mark.

In addition to its head office and laboratory complex in Toronto, CSA Group has regional branch offices in major centres across Canada and inspection and testing agencies in fourteen countries. Since 1919, CSA Group has developed the necessary expertise to meet its corporate mission: CSA Group is an independent service organization whose mission is to provide an open and effective forum for activities facilitating the exchange of goods and services through the use of standards, certification and related services to meet national and international needs.

For further information on CSA Group services, write to
CSA Group
178 Rexdale Boulevard
Toronto, Ontario, M9W 1R3
Canada

A National Standard of Canada is a standard developed by a Standards Council of Canada (SCC) accredited Standards Development Organization, in compliance with requirements and guidance set out by SCC. More information on National Standards of Canada can be found at www.scc.ca.

SCC is a Crown corporation within the portfolio of Innovation, Science and Economic Development (ISED) Canada. With the goal of enhancing Canada's economic competitiveness and social wellbeing, SCC leads and facilitates the development and use of national and international standards. SCC also coordinates Canadian participation in standards development, and identifies strategies to advance Canadian standardization efforts.

Accreditation services are provided by SCC to various customers, including product certifiers, testing laboratories, and standards development organizations. A list of SCC programs and accredited bodies is publicly available at www.scc.ca.

Standards Council of Canada
600-55 Metcalfe Street
Ottawa, Ontario, K1P 6L5
Canada

Cette Norme Nationale du Canada est disponible en versions française et anglaise.

Although the intended primary application of this Standard is stated in its Scope, it is important to note that it remains the responsibility of the users to judge its suitability for their particular purpose.

TMA trademark of the Canadian Standards Association, operating as "CSA Group"

National Standard of Canada American National Standard

CSA/ASME Standard

CSA B44.1:25/ASME A17.5-2025

Elevator and escalator electrical equipment

®A trademark of the Canadian Standards Association
and CSA America Inc., operating as "CSA Group"

Approved on March 12, 2025 by ANSI
Published in March 2025 by CSA Group
A not-for-profit private sector organization
178 Rexdale Boulevard, Toronto, Ontario, Canada M9W 1R3
1-800-463-6727 • 416-747-4044

Visit the CSA Group Online Store at www.csagroup.org/store/

The American Society of Mechanical Engineers (ASME)
Two Park Avenue
New York, NY 10016-5990, USA
1-800-843-2763

Visit the ASME Online Store at www.asme.org

Commitment for Amendments

This Standard is issued jointly by the American Society of Mechanical Engineers (ASME) and the Canadian Standards Association (Operating as “CSA Group”). Amendments to this Standard will be made only after processing according to the Standards writing procedures of both ASME and CSA Group.

The American Society of Mechanical Engineers (ASME)
Two Park Avenue
New York, NY 10016-5990
USA
1-800-843-2763
Visit the ASME Online Store at
www.asme.org

ISBN 978-0-7918-7746-3
Copyright © 2025 by The American Society of Mechanical Engineers (ASME)

This Standard is available for public review on a continuous basis. This provides an opportunity for additional public input from industry, academia, regulatory agencies, and the public at large.

All rights reserved. “ASME” and the above ASME symbol are registered trademarks of The American Society of Mechanical Engineers. No part of this document may be copied, modified, distributed, published, displayed, or otherwise reproduced in any form or by any means, electronic, digital, or mechanical, now known or hereafter invented, without the express written permission of ASME. No works derived from this document or any content therein may be created without the express written permission of ASME. Using this document or any content therein to train, create, or improve any artificial intelligence and/or machine learning platform, system, application, model, or algorithm is strictly prohibited.

Published in March 2025 by
CSA Group
A not-for-profit private sector organization
178 Rexdale Boulevard
Toronto, Ontario, Canada
M9W 1R3
1-800-463-6727 or 416-747-4044
Visit the CSA Group Online Store at
www.csagroup.org/store/

ISBN 978-1-4883-5266-9
ICS 91.140.90
© 2025 Canadian Standards Association

All rights reserved. No part of this publication may be reproduced in any form whatsoever without the prior permission of the publisher.

Contents

CSA Technical Committee on the Elevator Safety Code	7
ASME A17 Standards Committee on Elevators and Escalators	12
CSA B44.1/ASME A17.5 Joint Committee on Elevator and Escalator Electrical Equipment	16
Preface	18
1 Scope	21
1.1 Electrical equipment covered by this Standard	21
1.1.1 Application	21
1.1.2 Types of electrical equipment	21
1.2 Maximum voltage and ambient temperatures	21
1.3 Fire and electrical shock hazards	22
1.4 Terminology	22
1.5 Units	22
2 Reference publications, definitions, and abbreviations	22
2.1 Reference publications	22
2.2 Definitions	24
2.3 Abbreviations	27
3 Construction	28
3.1 Electrical components	28
3.2 Component without an appropriate standard	28
3.3 Circuits directly connected to a telecommunication network	28
3.4 Battery powered platform lifts and stair lifts for barrier-free access	29
3.5 Short-circuit current rating	29
3.5.1 General	29
3.5.2 Short-circuit current rating for an assembly in Canada	29
3.5.3 Short-circuit current rating for an assembly in the U.S.	29
4 Enclosure construction	29
4.1 General	29
4.1.1 Enclosure strength and rigidity	29
4.1.2 Risk of unintentional contact	29
4.2 Thickness of cast-metal enclosures for live parts	29
4.2.1 General	29
4.2.2 Minimum thickness requirements	30
4.2.3 Exceptions to minimum thickness requirements	30
4.3 Thickness of sheet-metal enclosures for live parts	30
4.3.1 Minimum thickness requirements	30
4.3.2 Exceptions to minimum thickness requirements	30
4.3.3 Supporting frame	30
5 Doors and covers	31
5.1 Securement	31

5.2	Preventing contact with live parts	31
5.3	Equipment accessible to general public (AGP)	31

6 Polymeric enclosures 31

6.1	Conduit connection test	31
6.2	Thickness	31
6.3	Polymeric enclosure requirements	31
6.3.1	Flame rating	31
6.3.2	Criteria for Flame Tests A and B	32
6.4	Polymeric materials used outside a protective or fire enclosure	32
6.4.1	Flame rating	32
6.4.2	Non-metallic plug or other closure means assembled to a sheet-metal box	32
6.5	Impact tests	33
6.6	Insulating material	33
6.7	Bonding requirements	33
6.8	Bonding conductors	33
6.9	Bonding conductor minimum size	33

7 Openings in enclosures 34

7.1	Requirements for all enclosures	34
7.1.1	Openings	34
7.1.2	Probe test	34
7.1.3	Usage of probe	34
7.1.4	Dimension of an opening	34
7.1.5	Bottom of the enclosure	34
7.1.6	Opening on the bottom of the enclosure	34
7.1.7	Wires of a screen	34
7.1.8	Metal mesh	35
7.1.9	Glass covering an observation opening and forming a part of the enclosure	35
7.2	Requirements for equipment enclosures marked in accordance with Clause 20.23	35

8 Wire-bending space 35

8.1	General	35
8.2	When a wire is restricted by a barrier or obstruction from being bent	35
8.3	Wire-bending space measurement exclusions	36
8.4	Wire size	36

9 Enclosures with environmental ratings 36

10 Protection against corrosion 36

11	Insulating material	36
11.1	General	36
11.2	Flame ratings	36
11.3	Insulating materials	36
11.4	Printed circuit board and coating	36

12 Protective devices 37

12.1	Overcurrent protection	37
12.2	Number, arrangement, and ratings or settings of protective devices	37

12.2.1	General	37
12.2.2	When a short circuit rating is greater than 10 000 A	37
12.3	Supplementary overcurrent protection	37
12.4	Disconnecting means	37
12.4.1	General	37
12.4.2	Mounting of a single throw knife switch	37
12.4.3	Using a single throw knife switch	37
12.4.4	Locking the disconnecting means	37
12.4.5	Interlock	37
12.4.6	Handle positions	38
12.4.7	Function of disconnection means	38
12.4.8	Use of a manual motor controller	38
12.4.9	Electrical requirements	38
12.5	Power from more than one source	39

13 Protection of control circuits 39

13.1	Control circuit conductor protection	39
13.2	Control circuit transformer protection	40
13.2.1	Overcurrent protection	40
13.2.2	Overcurrent protection exceptions	40
13.2.3	Secondary protection	40
13.2.4	Standard rated fuse or circuit breaker	40
13.2.5	Protection in primary circuit only	40
13.2.6	Supplementary protectors	40
13.3	Use of supplementary protectors in control circuits	41

14 Internal wiring 41

14.1	General	41
14.2	Conductors smaller than No. 24 AWG	41
14.3	Insulation between conductors	42
14.4	Protection of wiring	42
14.5	Bare live parts	42
14.6	Bare conductors	42

15 Wiring terminals and leads 42

15.1	General	42
15.2	Device current rating or hp rating	42
15.3	Minimum lead sizes	43
15.4	Field wiring terminal	43
15.5	Wire-binding screws	43
15.6	Terminal plates tapped for a wire-bending screw	43
15.7	Threading depth	43
15.8	Cord-connected equipment	43
15.8.1	General	43
15.8.2	Strain relief	43

16 Electrical spacings 44

16.1	General	44
16.2	When transient voltages are known and controlled	44
16.3	Transient suppression device	44

16.4	Maintaining electrical surfaces	44
16.5	Spacing at field wiring terminal	44
16.6	Spacings for devices with limited ratings	44
16.7	Spacings for other small devices	44
16.8	Magnetically operated switches	45
16.9	Spacings on printed circuit boards	45
16.10	Spacings for motor controllers rated more than 1 hp at 151 to 300 V	45
16.11	Spacings for motor controllers rated more than 1 hp at 51 to 150 V	45
16.12	Spacings for circuits with 50 V or less	45
16.13	Spacings on pilot light	46
16.14	Spacings on series circuit	46
16.15	Spacing on switches	46
16.16	Spacings on fuses and fuseholders	46
16.17	Ceramic, vitreous-enamel, or similar coatings	46
16.18	Spacing on parts in the OFF position	46
16.19	Enamelled or similar film-coated wires	46
16.20	Insulating barrier or liner	46
16.21	Insulating barrier or liner in addition to air space	47
16.22	Thin insulating material	47
16.23	Gaskets or seals	47
16.24	Enclosure without conduit openings or knockouts	47
16.25	Space between bare live parts and bushing	47
16.26	Spacing within components	47
16.26.1	General	47
16.26.2	Fuseholders	48
16.27	Alternative methods	48
16.27.1	General	48
16.27.2	Spacing between uninsulated live part and metal enclosure wall	48
16.27.3	Field wiring terminals	48
16.27.4	Guidelines when using CSA C22.2 No. 0.2 or ANSI/UL 840	48

17 Grounding 49

17.1	General	49
17.2	Terminations	49
17.3	Grounding conductors	49
17.4	Maximum number of conductors	49
17.5	Grounding conductor size	49
17.6	Transformers secondary grounding	49

18 Printed circuit boards 49

18.1	General	49
18.2	Printed circuit boards located in Class 2 circuits	49
18.3	Printed circuit boards located in circuits with extra-low voltage	50

19 Tests 50

19.1	General	50
19.2	Endurance	50
19.2.1	Elevator duty	50
19.2.2	Device that does not make or break current	50

19.2.3	Where elevator duty is not required	50
19.2.4	All other devices	50
19.3	Solid-state ac motor controller tests	51
19.3.1	General	51
19.3.2	Test voltage	51
19.3.3	Temperature test	51
19.3.4	Dielectric voltage withstand test	51
19.3.5	Oversupply and undervoltage tests	51
19.3.6	Overload and endurance tests	52
19.3.7	Exception	52
19.3.8	Short-circuit test	52
19.3.9	Breakdown of components test	53
19.3.10	Verification of electronic motor overload protection test	53
19.4	Power conversion equipment	53
19.4.1	General	53
19.4.2	Temperature test	54
19.4.3	Dielectric voltage withstand test	54
19.4.4	Operation tests	54
19.4.5	Normal operation	55
19.4.6	Contactor overload	55
19.4.7	Single phasing	55
19.4.8	Inoperative blower motor	55
19.4.9	Clogged filter	55
19.4.10	Current-limiting control	56
19.4.11	Breakdown of components	56
19.4.12	Electronic motor overload protection test	56
19.4.13	Short-circuit test	58
19.5	Impact test	58
19.5.1	General	58
19.5.2	Cold impact	58
19.6	Printed circuit board coatings	58
19.6.1	General	58
19.6.2	Dielectric strength — New samples	58
19.6.3	Dielectric strength — Aged samples	59
19.6.4	Dielectric strength — After humidity conditioning	59
19.6.5	Adhesion	59
19.7	Transient-voltage-surge suppression	59
19.7.1	General	59
19.7.2	Input and output	59
19.8	Compression	59
19.8.1	General	59
19.8.2	Set-up	59
19.9	Deflection	60
19.9.1	General	60
19.9.2	Set-up	60
19.10	Cord pullout	60
19.11	Crushing resistance test	60
19.11.1	General	60
19.11.2	Acceptance criteria	60

20	Marking	60
20.1	French	60
20.2	General	61
20.3	Copper or aluminum conductors	61
20.4	Electrical ratings	61
20.5	Auxiliary device	62
20.6	Polymeric enclosures	62
20.7	Manual switching means	62
20.8	Equipment with more than one source	62
20.9	Fuse replacement markings	62
20.10	Screw-type terminals	62
20.11	Oil tank	62
20.12	Enclosures with open bottoms	63
20.13	Control devices shipped in separate pieces	63
20.14	A live heat sink and other exposed parts	63
20.15	Short-circuit current rating	63
20.16	Overload relay with a replaceable current element	63
20.17	Grounding conductors No. 6 AWG or smaller	63
20.18	General caution and warning	64
20.18.1	General	64
20.18.2	Language	64
20.19	Control with dc motor ratings	64
20.20	Markings for controllers according to Clause 13.1	64
20.21	Power conversion equipment	64
20.21.1	General	64
20.21.2	Motor overload protection	64
20.21.3	Motor thermal protectors	65
20.21.4	Fuse replacement mark	65
20.21.5	Specific overcurrent protective devices	65
20.21.6	Wiring diagrams or instruction manuals	65
20.21.7	Overspeed protection	65
20.21.8	Electronic over-temperature protection	65
20.22	Controllers for platform lifts and chair lifts	65
20.23	Equipment marked with AGP	66
20.24	Controller with disconnecting means	66
20.25	Controllers for wind turbine tower elevators	66
20.26	Controllers for platform lifts or stair lifts for barrier-free access with an emergency power supply	66

Annex A (informative) — Application examples 93

Annex B (informative) — CSA Group and ASME elevator and escalator publications 99

Annex C (normative) — French marking translations 103

CSA Technical Committee on the Elevator Safety Code

D. McColl	Otis Canada Inc. Mississauga, Ontario, Canada <i>Category: Producer Interest</i>	<i>Chair</i>
C. S. Cowen	TK Elevator (Canada) Ltd. Toronto, Ontario, Canada <i>Category: Producer Interest</i>	<i>Vice-Chair</i>
C. M. Ayling	PCL Constructors Canada Inc. Mississauga, Ontario, Canada <i>Category: User/General Interest</i>	
S. Beekman	Les Produits Fraco Itée Cocoa, Florida, USA	<i>Non-voting</i>
L. Bialy	Louis Bialy and Associates LLC San Rafael, California, USA	<i>Non-voting</i>
S. Bornstein	KONE Canada Inc. Mississauga, Ontario, Canada <i>Category: Producer Interest</i>	
M. Brierley	Coldwater, Ontario, Canada	<i>Non-voting</i>
K. L. Brinkman	National Elevator Industry Inc. Eureka, Illinois, USA	<i>Non-voting</i>
D. Bruce	Alberta Municipal Affairs Edmonton, Alberta, Canada <i>Category: Regulatory Authority</i>	
K. C. Cheong	MKC Engineering Corp. Vancouver, British Columbia, Canada <i>Category: User/General Interest</i>	
M. D. Do Couto	Toronto Transit Commission Toronto, Ontario, Canada	<i>Non-voting</i>

K. Duncan	Inspection and Technical Services Winnipeg, Manitoba, Canada <i>Category: Regulatory Authority</i>	
T. Evans	UL Solutions Toronto, Ontario, Canada	<i>Non-voting</i>
P. Fraser	Government of Newfoundland and Labrador/ Service NL Mount Pearl, Newfoundland and Labrador, Canada <i>Category: Regulatory Authority</i>	
A. Ghazanchaei	Otis Canada Inc. Mississauga, Ontario, Canada	<i>Non-voting</i>
G. W. Gibson	George W. Gibson and Associates Inc. Sedona, Arizona, USA	<i>Non-voting</i>
S. Gurumurthy	KONE Canada Inc. Mississauga, Ontario, Canada	<i>Non-voting</i>
A. S. Hopkirk	Trident Elevator Company Ltd. Scarborough, Ontario, Canada <i>Category: User/General Interest</i>	
A. Irving	Alberta Elevating Devices and Amusement Rides Safety Association (AEDARSA) Calgary, Alberta, Canada	<i>Non-voting</i>
R. Isabelle	KJA Consultants Inc. Toronto, Ontario, Canada <i>Category: User/General Interest</i>	
F. Kassem	TK Elevator (Canada) Ltd. Dorval, Québec, Canada	<i>Non-voting</i>
C. Kelesis	Toronto Transit Commission Toronto, Ontario, Canada	<i>Non-voting</i>
J. W. Koshak	Elevator Safety Solutions LLC Germantown, Tennessee, USA	<i>Non-voting</i>
R. Kremer	Technical Standards and Safety Authority (TSSA) Toronto, Ontario, Canada	<i>Non-voting</i>

D. Laguerre	Schindler Elevator Corp. Toronto, Ontario, Canada <i>Category: Producer Interest</i>	
D. Lenardis	Public Service Procurement Canada Ottawa, Ontario, Canada	<i>Non-voting</i>
E. MacArthur	OTIS Canada Inc. Ottawa, Ontario, Canada <i>Category: Producer Interest</i>	
S. E. MacArthur	Government of Prince Edward Island Department of Housing, Land and Communities Charlottetown, Prince Edward Island, Canada <i>Category: Regulatory Authority</i>	
R. Marsiglio	H. H. Angus and Associates Ltd. Toronto, Ontario, Canada <i>Category: User/General Interest</i>	
P. McClare	Department of Labour and Advanced Education Dartmouth, Nova Scotia, Canada <i>Category: Regulatory Authority</i>	
E. McClaskey	International Union of Elevator Constructors Pleasant Hill, California, USA <i>Category: User/General Interest</i>	
K. L. McGettigan	Elevator Industry Work Preservation Fund Effingham, New Hampshire, USA <i>Category: User/General Interest</i>	
A. McGregor	Rooney, Irving and Associates Ltd.	<i>Non-voting</i>
	Ottawa, Ontario, Canada	
C. McIntyre	Canadian Elevator Industry Educational Program Pickering, Ontario, Canada <i>Category: User/General Interest</i>	
D. McLellan	Technical Standards and Safety Authority (TSSA) Toronto, Ontario, Canada <i>Category: Regulatory Authority</i>	
M. Mihai	Technical Standards and Safety Authority (TSSA) Toronto, Ontario, Canada	<i>Non-voting</i>

T. Miller	Priestman Neilson and Associates Ltd. Ottawa, Ontario, Canada <i>Category: User/General Interest</i>	
R. Murphy	Garaventa Canada Ltd. Surrey, British Columbia, Canada <i>Category: Producer Interest</i>	
H. Nuri	Toronto Transit Commission Toronto, Ontario, Canada	<i>Non-voting</i>
S. Palko	Technical Safety Authority of Saskatchewan (TSASK) Regina, Saskatchewan, Canada	<i>Non-voting</i>
M. Pedram	Vertex Elevator Design Etobicoke, Ontario, Canada <i>Category: Producer Interest</i>	
H. Peelle	The Peelle Company Ltd. Brampton, Ontario, Canada <i>Category: Producer Interest</i>	
B. Potvin	National Research Council — Codes Canada Ottawa, Ontario, Canada <i>Category: User/General Interest</i>	
A. Reistetter	National Elevator and Escalator Association Mississauga, Ontario, Canada	<i>Non-voting</i>
S. Reynolds	The Peelle Company Ltd. Brampton, Ontario, Canada	<i>Non-voting</i>
E. Ryba	Public Services and Procurement Canada Ottawa, Ontario, Canada <i>Category: User/General Interest</i>	
R. Santos	Technical Safety Authority of Saskatchewan (TSASK) Regina, Saskatchewan, Canada <i>Category: Regulatory Authority</i>	
R. Scharfe	Pembroke, Ontario, Canada	<i>Non-voting</i>
P. Sorensen	Technical Safety BC Vancouver, British Columbia, Canada	<i>Non-voting</i>

K. Steeves	New Brunswick Department of Public Safety Moncton, New Brunswick, Canada <i>Category: Regulatory Authority</i>	
M. Tevyaw	MHT Codes and Consulting Specialists Burlington, Ontario, Canada	<i>Non-voting</i>
T. Thomas	Government of the Northwest Territories Yellowknife, Northwest Territories, Canada <i>Category: Regulatory Authority</i>	
E. Towson	Technical Safety BC West Kelowna, British Columbia, Canada <i>Category: Regulatory Authority</i>	
B. Virk	UT Elevator Inc. Toronto, Ontario, Canada <i>Category: Producer Interest</i>	
J. Virk	UTE Elevator Inc. Toronto, Ontario, Canada	<i>Non-voting</i>
K. Virk	UT Elevator Inc. Toronto, Ontario, Canada	<i>Non-voting</i>
M. Wu	Société de transport de Montréal (STM) Montréal, Québec, Canada <i>Category: User/General Interest</i>	
L. Yang	CSA Group Toronto, Ontario, Canada	
M. Zingarelli	MAD Elevator Inc. Mississauga, Ontario, Canada	<i>Non-voting</i>
G. Lee	CSA Group Toronto, Ontario, Canada	<i>Project Manager</i>

ASME A17 Standards Committee on Elevators and Escalators

H. E. Peelle III	The Peelle Co. Ltd. Brampton, Ontario, Canada	<i>Chair</i>
R. E. Baxter	Baxter Residential Elevators LLC Allen, Texas, USA	<i>Vice-Chair</i>
M. H. Tevyaw	MHT Codes and Consulting Specialists Burlington, Ontario, Canada	<i>Vice-Chair</i>
G. A. Burdeshaw	American Society of Mechanical Engineers (ASME) New York, New York, USA	<i>Secretary</i>
E. V. Baker	National Elevator Industry Educational Program Attleboro Falls, Massachusetts, USA	
D. L. Barker	California Division of Occupational Safety and Health Monrovia, California, USA	
J. W. Blain	Edgett Williams Consulting Group Mill Valley, California, USA	
S. Bornstein	KONE Canada Inc. Mississauga, Ontario, Canada	
P. R. Bothwell	Drake EHC Oshawa, Ontario, Canada	
K. L. Brinkman	National Elevator Industry Inc. Eureka, Illinois, USA	
R. C. Burch	Vantage/GAL Manufacturing Co. LLC Nashville, Tennessee, USA	
J. W. Coaker	Coaker & Co. PC Fairfax Station, Virginia, USA	
J. Filippone	East New Brunswick, New Jersey, USA	

R. A. Gregory	Vertex Corp. Chicago, Illinois, USA
P. Hampton	TK Elevator Atlanta, Georgia, USA
J. T. Herrity	Department of the Navy, Naval Facilities Command (NAVFAC) Washington, DC, USA
B. Horne	Otis Elevator Farmington, Connecticut, USA
D. A. Kalgren	KONE Inc. Allen, Texas, USA
J. W. Koshak	Elevator Safety Solutions LLC Germantown, Tennessee, USA
R. Kremer	Technical Standards and Safety Authority (TSSA) Toronto, Ontario, Canada
D. McColl	Otis Canada Inc. Mississauga, Ontario, Canada
D. McLellan	Technical Standards and Safety Authority (TSSA) Toronto, Ontario, Canada
A. L. Peck	Hackensack, New Jersey, USA
D. K. Prince	Motion Control Engineering Inc. Rancho Cordova, California, USA
J. S. Rearick	Rearick & Co. Inc. Kittanning, Pennsylvania, USA
V. P. Robibero	RobiberoV Consultancy LLC Houston, Texas, USA
R. S. Seymour	Robert L. Seymour & Associates Inc. Frederick, Maryland, USA
C. Shade	Ohio Department of Commerce Columbus, Ohio, USA

R. D. Shepherd	Cape May Court House, New Jersey, USA	
W. M. Snyder	VTE Solution LLC Largo, Florida, USA	
J. Xue	Shanghai Institute of Special Equipment Inspection and Technical Research Shanghai, China	<i>Delegate</i>
D. S. Boucher	KONE Inc. Allen, Texas, USA	<i>Alternate</i>
J. Carlson	J Carlson Consulting LLC Oakland, California, USA	<i>Alternate</i>
L. W. Donaldson	Department of the Navy, Naval Facilities Command (NAVFAC) Washington, DC, USA	<i>Alternate</i>
D. Griefenhagen	International Union of Elevator Constructors Hugo, Minnesota, USA	<i>Alternate</i>
J. D. Henderson	TK Elevator Middleton, Tennessee, USA	<i>Alternate</i>
N. Imbimbo	Prysmian Group Casale Monferrato, Piedmont, Italy	<i>Alternate</i>
L. Metzinger	Alimak Group USA Inc. Houston, Texas, USA	<i>Alternate</i>
D. Morris	California Division of Occupational Safety and Health Monrovia, California, USA	<i>Alternate</i>
S. P. Reynolds	The Peelle Co. Ltd. Brampton, Ontario, Canada	<i>Alternate</i>
C. Romero	Motion Control Engineering Inc. Rancho Cordova, California, USA	<i>Alternate</i>
P. S. Rosenberg	Performance Elevator Consulting LLC Milwaukee, Wisconsin, USA	<i>Alternate</i>

A. Shelton	KONE Inc. Allen, Texas, USA	<i>Alternate</i>
J. L. Stabler	Stabler Associates Inc. St. Louis, Missouri, USA	<i>Alternate</i>
H. M. Vyas	VDA Inc. New York, New York, USA	<i>Alternate</i>
G. Lee	CSA Group Toronto, Ontario, Canada	<i>Project Manager</i>

ASME/NORMDOC.COM : Click to view the full PDF of ASME A17.5 CSA B44.1 2025

CSA B44.1/ASME A17.5 Joint Committee on Elevator and Escalator Electrical Equipment

M. Mueller	TK Elevator Memphis, Tennessee, USA	<i>Chair</i>
M. Mihai	Technical Standards and Safety Authority (TSSA) Toronto, Ontario, Canada	<i>Vice-Chair</i>
J. Aitamurto	KONE Corp. Hyvinkaa, Finland	
P. D. Barnhart	Underwriters Laboratories Inc. Research Triangle Park, North Carolina, USA	
G. A. Burdeshaw	American Society of Mechanical Engineers (ASME) New York, New York, USA	
J. D. Busse	Fujitec America Inc. Mason, Ohio, USA	
C. Castro	Otis Elevator Co. Florence, South Carolina, USA	
T. Evans	UL Solutions Toronto, Ontario, Canada	<i>Non-voting</i>
S. Feng	Shanghai Institute of Special Equipment Inspection and Technical Research Shanghai, China	
S. Kalola	TK Elevator Atlanta, Georgia, USA	
J. F. Kleine	Otis Elevator Co. Farmington, Connecticut, USA	
J. Ko	KONE Inc. Allen, Texas, USA	<i>Non-voting</i>